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Abstract

A nonlinear low-Reynolds number heat transfer model is developed to predict turbulent ¯ow and heat transfer in
separated and reattaching ¯ows. The k±e±fm model of Park and Sung (T.S. Park, H.J. Sung, A new low-Reynolds-
number model for predictions involving multiple surface, Fluid Dynamics Research 20 (1997) 97±113) is extended to

a nonlinear formulation, based on the nonlinear model of Gatski and Speziale (G.B. Gatski, C.G. Speziale, On
explicit algebraic stress models for complex turbulent ¯ows, J. Fluid Mech. 254 (1993) 59±78). The limiting near-
wall behavior is resolved by solving the fm elliptic relaxation equation. An improved explicit algebraic heat transfer

model is proposed, which is achieved by applying a matrix inversion. The scalar heat ¯uxes are not aligned with the
mean temperature gradients in separated and reattaching ¯ows; a full di�usivity tensor model is required. The near-
wall asymptotic behavior is incorporated into the fl function in conjunction with the fm elliptic relaxation equation.

Predictions of the present model are cross-checked with existing measurements and DNS data. The model
performance is shown to be satisfactory. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a multi-prong attack on the problem of turbulent
¯ow and heat transfer processes in separated and reat-
taching ¯ows, a linear k±e±fm model has been devel-

oped by Park and Sung [1]. In their model, the near-
wall e�ect without reference to distance and the none-
quilibrium e�ect were incorporated. The main empha-

sis was placed on the formulation of the elliptic
relaxation fm equation, together with the presentation

of nonlocal near-wall e�ects in a general coordinate
system. However, the linear k±e±fm model has some
de®ciencies. The anisotropic characteristics of Rey-

nolds stresses were not properly resolved in the recircu-
lating region. E�orts are now directed to extending the
linear model to a nonlinear formulation.
A literature survey reveals that many nonlinear or

anisotropic eddy-viscosity models have been studied
[2±4]. The nonlinear model of Gatski and Speziale [3]
is notable, which satis®es both the realizability and

necessary invariance requirements. A modi®ed version
of their model is employed in the present study, which
was made by eliminating the inconsistent rotation term

[3,5]. Based on the nonlinear model of Gatski and Spe-
ziale, the near-wall treatment is included in conjunc-
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tion with the wall elliptic relaxation fm equation. A
nonlinear low-Reynolds number k±e±fm model is pro-
posed, which combines the nonlinear model of Gatski

and Speziale [3] and the linear k±e±fm model of Park
and Sung [1].
It is known that a simple gradient transport model

predicts well the scalar heat ¯ux in homogeneous
¯ows. Turbulent heat transfer is oftentimes simulated
by employing the turbulent Prandtl number Pt, by

which the thermal di�usivity is prescribed by the
known eddy viscosity. This assumption satis®es Pope's
linear superposition principle of scalars in turbulent

¯ows [6]. However, these are not adequate to predict
convective heat transfer in separated and reattaching
¯ows. This is because the scalar heat ¯uxes are no
longer aligned with the mean temperature gradients.

Moreover, the magnitude of the ¯ux component down
the gradient varies substantially, depending on the
direction of the imposed mean temperature gradient

[7]. In the present study, a di�usivity tensor model is
brought forth to implement the orientation of mean
temperature gradient with respect to the mean tem-

perature. Starting from an algebraic heat transfer
model, an explicit di�usivity tensor model is obtained
by applying a matrix inversion. To secure an accurate
prediction near the wall, a thermal damping function

fl is incorporated in conjunction with the prior fm ellip-
tic relaxation function. The present model is tested for
the turbulent ¯ow behind a backward-facing step by

comparing the predictions with the experimental data
of Vogel and Eaton [8].

2. Nonlinear k±e±fm model

A stationary and incompressible turbulent ¯ow is
considered, where the Reynolds-averaged Navier±

Stokes and continuity equations can be written in the
form [1]:
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where Ui is the mean velocity, P the mean pressure
and n the kinetic viscosity of the ¯uid, respectively.
The Reynolds stress tensor �tij � uiuj� can be rep-

resented by the eddy viscosity form [1]:

tij � 2

3
kdij ÿ 2ntSij, �3�
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Sij � 1
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is the mean rate of strain tensor. nt is the eddy vis-
cosity, which is given by

nt � Cm fm
k2

e
, �5�

where the coe�cient Cm is a constant �Cm � 0:09).
A wall damping function fm is introduced in Eq. (5)

to describe the damping of eddy viscosity near the
wall. fm must approach 1 far away from the wall so
that the standard k±e model form is recovered. How-

ever, in complex separated and reattaching ¯ows, a
local equilibrium �Pk � e� is not guaranteed [1]. In an
e�ort to incorporate these nonequilibrium e�ect

�Pk 6� e), variations of Cm are allowed by decomposing
fm into fm � fm1 fm2 , in which fm1 signi®es the e�ect of
wall proximity in the near-wall region while fm2 rep-

Nomenclature

c speci®c heat
Cf mean skin friction coe�cient
Cm, Ce1 , Ce2 model constants

fm, f2 model functions
H height of backward-facing step
h heat transfer coe�cient �� qw=

�Tw ÿ T1�)
k turbulent kinetic energy
Pt turbulent Prandtl number �� nt=at)

Pk production of turbulent energy
�� ÿuiuj@Ui=@x j)

Rt turbulent Reynolds number �� k2=ne)
Sij strain rate tensor �� 0:5�Ui, j �Uj,i �)

St Stanton number �� h=Urc)
T mean temperature
XR reattachment length

Greek symbols
at thermal eddy di�usivity
d boundary layer thickness

e dissipation rate of turbulent energy
r density
sk, se model constants of turbulent di�usion
oij vorticity tensor �� 0:5�Ui, j ÿUj, i �)
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resents the e�ect of nonequilibrium away from the
wall [1]:

fm1 �
�
1� 20 exp

�
ÿ �Rt=120�2

�
Rÿ3=4t

�
f 2w, �6�

fm2 � 7:0
4:5� 0:3Pk=e

�4:5� 1:3Pk=e�2
: �7�

In the above, Rt is the turbulent Reynolds number
Rt � k2=ne: To avoid the empiricism associated with
de®ning the wall distance, a Helmholtz-type elliptic

relaxation equation for fw was introduced by Park and
Sung [1], which is a general ellipticity for fw without
knowledge of the wall distance:

L2r2fw � R3=2
t

A2
�fw ÿ 1�: �8�

Here, A is the model constant A � 0:8: L is the turbu-
lent length scale L � k3=2=e: However, as the wall is
approached, k goes to zero, while e remains ®nite.

Hence, this scale tends to zero. In order to handle the
singularity close to the wall, the Kolmogorov length
scale is adopted as the lower bound [9]:

L2 � 0:22

"
k3

e2
� 702

�
n2

e

�1=2
#
: �9�

The details regarding the model formulation are com-

piled in Park and Sung [1].
For a more accurate simulation of separated and

reattaching ¯ows, it is important to account for the
nonlinear behavior of eddy viscosity. The general form

of tij is expanded as

tij � 2

3
kdij ÿ 2ntSij � tNij , �10�

where tNij is the nonlinear part of the deviatoric Rey-
nolds stress tensor which is traceless [3]:
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The mean vorticity tensor oij is oij � 0:5�@Ui=@xj ÿ
@Uj=@x i �: The coe�cients a1, a2 and a3 are constants
and dij denotes the Kronecker delta. Eq. (11) has the
similar form to the expression derived by Rubinstein

and Barton [10] and Yoshizawa [11]. Speziale asserted
that the last term in Eq. (11) shows physically incon-
sistent results and unrealizable solutions in rotating

¯ows [5]. This suggests a3 � 0: Based on the nonlinear
model of Gatski and Speziale [3], the afore-stated

near-wall e�ect �k2=e0nt� is included in concert with
the wall relaxation elliptic fm equation. A nonlinear
k±e±fm model is proposed, where the nonlinear model

of Gatski and Speziale [3] and the linear k±e±fm model
[1] are combined together:

tNij � a1
k

e
nt

ÿ
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�
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e
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3
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�
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where

a1 � ÿ1
2
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�
4

3
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a2 � 2a1
2ÿ Ca3

2ÿ Ca4
, �14�

gÿ1 � 1

2
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C �e1 ÿ 1
ÿ 1: �15�

The model constants Ca1 , Ca2 , Ca3 , Ca4 and Sp are
taken from the pressure±strain model [12]:

Ca1 � 6:6, Ca2 � 0:36, Ca3 � 1:25, Ca4 � 0:40,

Sp � 2:22:
�16�

The turbulent kinetic energy equation and its dissipa-
tion rate equation are:
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where the model constants sk, se, Ce1 , Ce2 and C1 are:

sk � 1:2, se � 1:3, Ce1 � 1:45, Ce2 � 1:8,

C1 � 0:4:
�19�

It is seen that the nonequilibrium e�ect is also incor-
porated in C �e1 , which has the form C �e1 � Ce1 ÿ
Z�1ÿZ=4:44�
1�0:25Z3 : Z is the ratio of the turbulent to mean strain

time scale �Z � �������������
2SijSij

p
k=e). The model function f2 in

Eq. (18) is expressed as f2 � 1ÿ 2
9 exp�ÿ0:33R1=2

t �: The
wall boundary conditions are: U � V � k � 0 and
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e � n@ 2k=@n2, where n is the wall normal direction.
Details can be found in Park and Sung [1].

3. Explicit algebraic heat transfer model

As remarked earlier, simple gradient-transport-type

models are inadequate in predicting convective heat
transfer in separated and reattaching ¯ows. A tensor
di�usivity model is needed to implement the orien-

tation of mean temperature gradient with respect to
the mean temperature. To achieve a full di�usivity ten-
sor model resulting from mean temperature gradients
aligned with each of the coordinate directions, an alge-

braic heat ¯ux model is employed [7],

Piy � fiy ÿ eiy � uiy
2k
�Pk ÿ e� � uiy

2ky
�Py ÿ ey �, �20�

where Piy, fiy and eiy denote the production of uiy,
pressure±temperature-gradient and dissipation of uiy,
respectively. Py is the production of temperature var-
iance �Py �ÿuiy@T=@x i� and ey is the dissipation rate
of temperature variance.

It is stressed that the e�ect of nonequilibrium of the
velocity ®eld �Pk=e� has been fully accounted for in the
afore-stated velocity model. Accordingly, the nonequi-

librium e�ect of passive scalar ®eld �Py=ey� is neglected
in the present study to avoid these duplicate consider-
ations. Furthermore, the thermal nonequilibrium can
be resolved by solving the full turbulent di�usivity ten-

sor model. The thermal equilibrium condition, i.e.,
Py=ey � 1, also satis®es Pope's linear superposition
principle of passive scalars in turbulent ¯ow [6]. Eq.

(20) can then be simpli®ed to

uiy �
2k=e

ÿ
Piy � fiy ÿ eiy

�
�Pk=eÿ 1� : �21�

If the model of Gibson and Launder for fiy ÿ eiy is
adopted, i.e., fiy ÿ eiy � ÿC1y

e
kuiyÿ C2yPiy [13], the

resulting equation after arrangement takes the form:

C1y

1ÿ C2y

e
k
uiy � ÿujy@Ui

@x j
ÿ uiuj

@T

@x j
, �22�

where C1y and C2y are model constants, C1y � 3:0 and

C2y � 0:33 [13].
In matrix form, Eq. (22) can be expressed in a non-

dimensional form:
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where b�iy is de®ned as b�iy � uiy=2
���
k
p

Tref and tij is t�ij �
uiuj=2k: Tref denotes a reference temperature. The

dimensionless rescaled gradient variables are:
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The above algebraic heat transfer model is implicit in

nature since the turbulent heat ¯ux tensor appears on
both sides of Eq. (22). When the model is applied to
nonequilibrium turbulent ¯ows with localized strain
rates that are large, the predictive capabilities would

be low [3]. An explicit algebraic model is required,
which is achieved by applying a matrix inversion [7]:24 b�1y
b�2y
b�3y

35 � flC
ÿ1
D

24 a11 a12 a13
a21 a22 a23
a31 a32 a33

35

�
24 t�11 t�12 t�13
t�21 t�22 t�23
t�31 t�32 t�33

35
266666664

@T �

@x

@T �

@y

@T �

@z

377777775: �26�

However, it is seen that a clear determinant of �aij� is
not attained due to the unknown velocity gradient
terms in Eq. (23). An alternative can be estimated by

taking a factor of the model function CD: The gradient
transport form has been directly derived from the gov-
erning equation for the passive scalar ¯ux, with the

assumption that the sum of the modelled terms can be
represented by a vector aligned with b�iy [14]. This
choice is consistent with those by Rogers et al. [14]

and Rhee and Sung [7], after which a modi®ed version
is proposed in the present study.
The coe�cient CD was proposed by Rogers et al.
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[14], which is a function of Rt: The behavior of CD for
all scalar simulation in homogeneous shear ¯ow was

described as

CD � a1

�
1� a2

RtPr

�a3�
1� a4

Ra5
t

�a6

, �27�

where Pr denotes the Prandtl number. It is found that
the linearity and independence principles set forth by

Pope are not violated in the CD formulation [6]. The
model constants a1±a6 are determined by ®tting the
DNS data [15,16]; a1 � 4, a2 � 130, a3 � 0:25, a4 � 19,

a5 � 5:5=8 and a6 � ÿ2:
The matrix aij in Eq. (26) is represented as
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If the continuity equation is applied to the above

equation, aij can then be rearranged in a simple tensor
form,

aij � dij ÿ @U
�
i

@x j
� 1

2
eimnejkl
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@xm

@U �l
@xn
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It is interesting to see that aij is decomposed into three
parts. The ®rst term is diagonal. When only this term
exists, a linear relation holds between turbulent heat

¯ux and mean temperature gradient. The o�-diagonal
components of aij are formed by the rescaled mean vel-

ocity terms, in which the third term vanishes under the
two-dimensional ¯ow condition.
The direct substitution of aij into Eq. (26) yields the

equation for b�jy:

ÿb�jy � flC
ÿ1
D
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The ®rst term on the right-hand side of Eq. (30) plays
a dominant role in predicting the scalar heat ¯ux in
homogeneous ¯ows, in which the stress term is aligned

with the turbulent heat ¯ux. Accordingly, a simple
transport-type model can be formulated with the con-
stant turbulent Prandtl number assumption. However,

this model is de®cient in predicting convective heat
transfer in complex separated and reattaching ¯ows.
As mentioned earlier, the scalar heat ¯uxes are no
longer aligned with the mean temperature gradients,

i.e., the di�usivity tensor does not have to be diagonal.
Moreover, the magnitude of the ¯ux component down
the gradient varies substantially, depending on the

direction of the imposed mean temperature gradient.
Finally, the formulation of fl is inspected. A litera-

ture survey indicates that explicit heat transfer models

have been in use [14,17±19]. However, these preceding
studies have not been extended to near-wall ¯ows with
the afore-stated full di�usivity tensor model. In practi-

cal engineering applications, the ability to integrate the
model to the wall is most essential in that it impacts
directly on the evaluation of heat transfer coe�cients.
The near-wall e�ect is incorporated in the fl function.

It is known that the near-wall asymptotic behavior is
derived as ÿvyAy3, @T=@yAy0 and Cÿ1D Ayÿ4:5: To
satisfy the thermal near-wall function, flAy2:5: Based
on the elliptic relaxation equation for fw in Eq. (8), the
®nal form of fl is modeled as

fl � f 2:5w : �31�

4. Results and discussion

The proposed model is tested for the case of the
backward-facing ¯ow, which is frequently used in
benchmarking the performance of turbulence models

for separated and reattaching ¯ows. The model predic-
tions are compared with the experimental data of
Vogel and Eaton [8]. The numerical procedure and
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boundary conditions are well described in the earlier
studies of Rhee and Sung [7,20].

As a validation of the present nonlinear k±e±fm
model performance, distributions of the wall shear
stress coe�cient �Cf� are exhibited in Fig. 1. These are

closely related to the prediction of turbulent heat
transfer near the wall. The predicted Cf distributions
are compared with the experimental data of Vogel and

Eaton [8]. A nondimensional streamwise coordinate
X � � �Xÿ XR�=XR is employed, where XR represents
the reattachment length. The step-height Reynolds

number is ReH � 28,000: As seen in Fig. 1, the present
nonlinear model prediction in the recirculating region
�ÿ1RX �R0� shows a better agreement with the exper-
iment than the linear k±e±fm model prediction. This

may be caused by the fact that the localized strain and
rotation rates in the recirculation region are very large.
These e�ects are included in the nonlinear model in

conjunction with the fm elliptic relaxation function. On
the contrary, the predictions in the relaxing region
�0RX �R2� by both models are less satisfactory,

resulting in large discrepancies between predictions and
experimental data. These overpredictions are due to
the de®ciencies of the eddy viscosity model arising

from the Boussinesq approximation, which appears to
be a common feature of reattaching ¯ow calculations
[21,22]. In the relaxing region, the nonlinear e�ects by
the strain rates are insigni®cant, and no di�erences are

found between the two curves, i.e., the linear and non-
linear model predictions.
The pro®les of eddy viscosity �nt� are shown in Fig.

2 for the recirculating region �X=H � XR=Hÿ 2:1� and
the relaxing region �X=H � XR=H� 1:9). Comparisons
are made with the experimental data of Driver and

Seegmillar [23] for ReH � 38,000: It is evident that the
nonlinear model results follow the experimental data in
the recirculating region. The agreement is better in the
recirculating region than in the recovery region.

Comparisons are extended to the distributions of

turbulent kinetic energy �k=kmax� and corresponding
Reynolds shear stress �uv=uvmax), as shown in Figs. 3
and 4. The predicted results of turbulent kinetic energy

by two models agree reasonably well with the exper-
imental data [24] except in the upper recirculating
region. A closer inspection of the pro®les in the recir-

culating region at X=H � 6 indicates that the present
nonlinear model prediction is in better agreement with
the experimental data than the linear model prediction.
As for the Reynolds shear stress in Fig. 4, the non-

linear model predictions are more consistent with the
experimental data, especially in the recirculating
region. These comparisons reinforce the capability of

Fig. 2. Comparison of the predicted nt with experimental

data.

Fig. 3. Comparison of the predicted k with experimental data.

Fig. 1. Comparison of the predicted Cf with experimental

data.
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the present nonlinear model for predicting the recircu-
lating ¯ows over a backward-facing step.

Next, the present heat transfer model performance is
investigated for separated and reattaching ¯ows.
Before applying the present model to the separated

and reattaching ¯ow, the heat transfer characteristics
in simple attaching ¯ow is tested by employing the tur-
bulent Prandtl number �Prt), in which the thermal dif-

fusivity is prescribed through the known eddy
viscosity. An ordinary boundary layer ¯ow, i.e., a fully
developed channel ¯ow, is selected. The predicted pro-

®les of temperature T � are exhibited in Fig. 5 under
two di�erent wall thermal conditions, i.e., uniform
wall temperature and uniform wall heat ¯ux. The
selected Reynolds numbers are Ret � 150 and 180, for

which the DNS data are available [15,16]. The predic-

tions by the present model are also displayed for com-
parisons. As seen in Fig. 5, the constant Prandtl

number assumption is reasonable in the fully devel-
oped channel ¯ow. The present model shows good
agreement with the DNS data, while the constant tur-

bulent Prandtl number model underpredicts slightly in
the region of 10Ry�R50: It is noted that the non-
linear model recovers the linear model in a fully devel-

oped channel ¯ow, i.e., two models produce the same
results.
Further comparison is made in Fig. 6, where the

pro®les of turbulent heat ¯ux vy
�

in the near wall
region are displayed. Both the present model and the
constant Prandtl number model provide good agree-
ment with the DNS data. This means that the appli-

cation of the constant turbulent Prandtl number is
acceptable in the attached boundary layer ¯ow. The
pro®les of the coe�cient CD and the fl function are

compared with the DNS data (Fig. 7) [16]. It is shown
that the near-wall behaviors of ÿ1CD and fl are in
excellent agreement with the DNS data. These give cre-

dence to the model performance close to the wall.
Now, the present heat transfer model is validated in

separated and reattaching ¯ows. The Stanton number

St pro®les are displayed in Fig. 8, where the present
di�usivity tensor model is applied to the ¯ow over a
backward-facing step. The Stanton number pro®les by
employing the turbulent Prandtl number Prt � 1:0,
based on the linear and the nonlinear k±e±fm models,
are also plotted in Fig. 8. The present model prediction
shows an excellent agreement with the experiment.

However, it is seen that the predictions with Prt � 1:0
for both models are in poor agreement with the exper-
iment. These signi®cant overpredictions indicate that

the constant Prandtl number assumption is no longer
applicable to separated and reattaching ¯ows. How-
ever, all of the Stanton number pro®les have similar

Fig. 4. Comparison of the predicted ÿuv with experimental

data.

Fig. 5. Comparison of the predicted T with DNS data. Fig. 6. Comparison of the predicted ÿvy with DNS data.
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general features, i.e., the peak heat transfer rates occur
near the reattachment region �X � � 0� and there is a
low heat transfer rate in the recirculation region. The

heat transfer coe�cient recovers fairly rapidly to the
¯at-plate behavior downstream of the reattachment [8].
To look into the model performance between the

simple transport type model and the present di�usivity
tensor model, two model predictions for St are com-
pared in Fig. 9. Here, the simple model is represented
by ÿb�jy � flC

ÿ1
D djpt�pq@T

�=@xq, which is composed of

the ®rst term in Eq. (30). The discrepancy between the
two model predictions is minor, however, the simple

model underpredicts slightly in the recirculating region.
It is interesting that the maximum Stanton number

Stmax by the present model agrees well with the exper-
iment while the Stmax pro®le by the simple model is
underpredicted.

Comparisons are made by showing the maximum
Stanton number Stmax in Fig. 10. The maximum Stan-
ton number is plotted by varying ReH
�13,000RReHR42,000). Here, d=H represents the in-
itial boundary layer thickness normalized by the step
height H. It is clearly seen that the present model pre-
dictions are in excellent agreement with the exper-

iment. However, the predicted results by Prt � 1:0 are
seen to be slightly overpredicted. The results by the
nonlinear k±e±fm model are better than those by the

linear model. In general, Stmax is shown to decrease
monotonically as ReH increases. It is known that Stmax

is a function of ReH [8].

The Prt distribution is useful in understanding the
heat transfer characteristics in separated and reattach-
ing ¯ows. The de®nition of Prt in Fig. 11 is uv

2S12
= vy
@T=@ y :

An inspection of the contour plot of Prt discloses that

the assumption of Prt � constant is inadmissible in the

Fig. 7. Comparison of the predicted fl and Cÿ1D with DNS

data.

Fig. 8. Comparison of the predicted St with experimental

data.

Fig. 9. Model comparisons with experimental data.

Fig. 10. Comparison of the predicted Stmax with experimental

data.
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recirculating region while Prt � constant is acceptable
outside the recirculating zone. It is found that Prt

increases considerably in the recirculating region. This

may be caused by the enhanced eddy di�usivity.
The pro®les of mean temperature are shown in Fig.

12. The step height Reynolds number is ReH � 23,000

and the boundary layer thickness is d=H � 1:1 at the
inlet �X=H � ÿ3:8). As shown in Fig. 12, the predicted
pro®les of mean temperature by the present model

show better agreement with the experiment than the
other two model predictions.

5. Conclusions

A computational study has been made to investigate
the predictive capabilities of an explicit di�usivity ten-

sor model to separated and reattaching ¯ows. A new
version of nonlinear k±e±fm model was developed. The
limiting near-wall behavior close to the wall and the

nonequilibrium e�ect in the recirculating region away
from the wall were resolved by solving the elliptic
relaxation equation. The nonequilibrium e�ect in the
recirculating region was fully accounted for. The wall

limiting behavior of the di�usivity tensor model was
also incorporated. The present model was tested
against the DNS data of a fully developed channel

¯ow with a uniform wall temperature and with a uni-
form heat ¯ux. The near-wall behavior of vy was
reproduced fairly well. Next, the validation was

extended to the ¯ow over a backward-facing step. In
this case, the predicted results of wall shear stress coef-
®cient �Cf � and Stanton number (St ) were in good

agreement with the relevant experiment. It was
revealed that the present model prediction is in better
agreement with the experiment than the case of Prt �
1:0: The assumption of Prt � constant is inadmissible

in the recirculating region.
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